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Many objective functions have been proposed in X-ray crystallography to solve

the molecular replacement (MR) problem and other optimization problems.

This paper establishes the equivalence of optimizing two of these target

functions, a commonly used correlation coef®cient and a least-squares function.

This equivalence may exist only in the neighborhoods about the global optima

or the entire MR variable space depending on whether the mean values of the

observed and calculated data are subtracted from the data. In addition, an

argument is presented that the correlation coef®cient between structure-factor

magnitudes is likely to perform better than the correlation coef®cient between

intensities, especially when low-resolution data are used. This prediction was

tested during coarse grid searches at low resolution using the MR program

SOMoRe.

1. Introduction

A major goal in X-ray crystallography is to compare quanti-

tatively the observed and calculated diffraction patterns for a

molecular structure being solved. This comparison is central to

molecular replacement (MR), the evaluation of trial models,

re®nements and error estimation. The measure of closeness

between observed and calculated intensities (or structure-

factor magnitudes) is determined by a target function. The

choice of target function has been debated and much effort

has been put into developing new target functions for different

applications.

When X-ray crystallography is used, solving the MR

problem is often a critical step in determining a molecular

structure or subdomain. The MR problem is an optimization

problem to determine the orientation and position of a model

protein that produces calculated intensities closest to those

observed from a crystal with unknown but similar atomic

structure. Various target functions for MR have been

discussed; see Blundell & Johnson (1976), Harada et al. (1981),

Fujinaga & Read (1987), Brunger & DeLano (1995), Borge et

al. (2000), Navaza (2001), Read (2001), Tong (2001), for

example.

Understanding the properties of the variously used func-

tions, including the nature of the `landscapes' around true

optima, is an essential part of developing a phenomenological

approach in practical applications. In this article, we establish

that maximizing a commonly used correlation coef®cient is

equivalent to minimizing a least-squares function when the

calculated (or observed) intensities are properly scaled. In

other words, these two optimization problems have the same

set of global optimizers or solutions to a given crystallography

problem.

2. Objective functions

We introduce the correlation coef®cient and a least-squares

function, and then we prove that the set of global minimizers

of the least-squares function and the set of global maximizers

of the correlation coef®cient are identical under some mild

assumptions.

2.1. Correlation coefficient

In this paper, we are interested in the standard linear

correlation coef®cient that has been shown by Hauptman

(1982) to be a measure of the phase error between the model

and the target protein and, as a result, has been widely used in

MR software packages, for example Fujinaga & Read (1987),

Kissinger et al. (1999), Grosse-Kunstleve & Adams (2001),

Glykos & Kokkinidis (2001), Navaza (2001). The correlation

coef®cient between observed and calculated intensities is

typically written as

C�Ic�u�; Io� �
P

h�Ic
h�u� ÿ hIc�u�i��Io

h ÿ hIoi�P
h�Ic

h�u� ÿ hIc�u�i�2� 	
1=2
P

h�Io
h ÿ hIoi�2� �

1=2
;

�1�
where Io

h and Ic
h�u� are the observed and calculated intensities

occurring at the lattice point h, u 2 Rn speci®es the orienta-

tion and translation of the model protein being positioned,
P

h

is the summation over all h in the resolution range and hIoi
and hIci are the average values of the observed and calculated



intensities, respectively. Of course, structure-factor magni-

tudes, jFhj � �Ih�1=2, can be used in place of intensities.

As we will see in the following proof, it is also useful to

express the correlation coef®cient as the following cosine

function,

C�w�u�;wo� � w�u�Two

kwokkw�u�k � coshw�u�;woi; �2�

where T denotes the transpose and coshw�u�;woi is the cosine

of the angle between the two vectors w�u� 2 Rm and wo 2 Rm,

which can be either jFc�u�jk ÿ hjFc�u�jki and jFojk ÿ hjFojki or

jFc�u�jk and jFojk for k � 1 or 2. (If k � 1, then structure-

factor magnitudes are used and, if k � 2, then intensities are

used.)

By expressing the correlation coef®cient as a cosine func-

tion, we can see clearly that C�w�u�;wo� 2 �ÿ1; 1� and that it is

invariant to scaling either the calculated or observed data

because scaling either vector does not change the cosine of the

angle between the two vectors. However, if the average values

are not subtracted from the observed and calculated inten-

sities, then C�w�u�;wo� 2 �0; 1� because both w�u� and wo will

be non-negative. Thus, the angle between them will be

between 0 and 90�.
2.1.1. Comparison to the real-space rotation function.

Although we are focusing on the equivalence between the

correlation coef®cient and a least-squares function, it is useful

to keep in mind other widely used objective functions like the

real- and reciprocal-space rotation functions. Parallels are

often drawn between the correlation coef®cient and these

functions. See, for example, Fujinaga & Read (1987), Brunger,

(1993), Grosse-Kunstleve & Adams (2001) and Navaza (2001).

The real-space rotation function is the integral of the product

of two Patterson functions that can be computed directly from

observed and calculated intensities:

R�
� � R
U

Po�u�Pc�
u� dV; �3�

where U is a volume of integration usually spherical, Po is the

Patterson of the unknown target structure and Pc is the

Patterson of the model. The reciprocal-space formulations of

the Patterson functions are

Po�u� � 1

V

X
h

Io
h cos�2�h � u�; �4�

Pc�
u� � 1

V

X
p

Ic
p cos�2�p � �
u��; �5�

where u � �u; v;w� 2 R3 are fractional coordinates in the

Patterson unit cell, V is the volume of the unit cell and h and p

are lattice points. In this formulation, when the model is

rotated by 
 2 R3�3, the same rotation is applied to Patterson

space; see Drenth (1999, p. 221), for example.

To gain physical insight into the real-space rotation func-

tion, consider the corresponding real-space analog to (4):

P�u� � R
unit cell

��r���r� u� dr; �6�

where ��r� is the electron density at the point r in the crystal's

unit cell. For a proof of the equivalence between (4) and (6),

see Drenth (1999). Thus, if there is a peak at u, then u is a

vector between two atoms. If the vector is between atoms

within the protein they are called self-vectors, while vectors

between atoms in different molecules are called cross-vectors.

Now, we can see that the real-space rotation function

measures overlap between self-vectors of the model and self-

vector sets of the target protein (one set for each copy of the

target protein in the unit cell). There will, of course, be a great

deal of peak overlap in each individual Patterson map because

there are N2 ÿ N peaks for a molecule with N atoms. To

compensate, `sharpened' Patterson functions can be computed

using normalized structure factors (Blundell & Johnson, 1976;

Stout & Jensen, 1989) or other weighting schemes applied to

the intensities (Dunitz & Seiler, 1973). In addition, there will

be a very large peak at the origin. However, Patterson

determined that subtracting the mean value of the intensities

effectively removes the large origin peak; see Lattman (1985),

for example. Lastly, the volume of integration U is de®ned in

an attempt to include only self-vectors and exclude cross-

vectors since self-vectors will rotate as the model rotates and

cross-vectors are insensitive to rotation of the model. Using

Parseval's theorem, an expression similar to the correlation

coef®cient can be derived from the following quotient,R
U Po�u�Pc�
u� dV

�RU Po�u�2 dV�1=2�RU Pc�
u�2 dV�1=2
; �7�

where the denominator acts to normalize the real-space

rotation function in the numerator; see Navaza (2001), for

example. If we take the Fourier transform of the real-space

rotation function and apply Parseval's theorem, then we get

the following reciprocal-space formulation of the rotation

function:

R0�
� � 1

V2

X
h

X
p

Io
h Ic

p Ghp; �8�

where Ghp �
R

U exp�2�i�h�
Tp� � x� dx (see Rossmann &

Blow, 1962; Rossmann, 2001). In a similar comparison,

Brunger (1997) notes that

PC � hjEoj2jEc�
�j2 ÿ hjEoj2ihjEc�
�j2ii
hjEoj4 ÿ hjEoj2i2i1=2hjEc�
�j4 ÿ hjEc�
�j2i2i1=2

�9�

is equal to the Fourier transform of the origin-subtracted real-

space rotation function using normalized structure factors,

jEoj and jEcj, when the average is taken over a single shell.

So, in general, the correlation coef®cient and rotation

function, real or reciprocal, should behave similarly. However,

in practice, when computing different formulations of the

rotation function, different approximations are used, thereby

introducing discrepancies of varying magnitude between these

functions; see Lattman (1985), Brunger (1993), Grosse-

Kunstleve & Adams (2001), for example.
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2.2. Least-squares function

A natural target function to measure the disagreement

between the observed and calculated intensities is the

following least-squares function:

L�w�u�; �� � k�w�u� ÿ wok2; �10�
where � 2 R is a scale factor, w�u� 2 Rm is the vector of

calculated data and wo 2 Rm is the vector of observed data.

Again, w�u� and wo can be either jFc�u�jk ÿ hjFc�u�jki and

jFojk ÿ hjFojki or jFc�u�jk and jFojk for k � 1 or 2. If the least-

squares function is used, then either the calculated or the

observed data should be scaled because the observed data are

measured on a relative scale during the X-ray crystallography

experiment. We choose to scale the calculated data, but the

same effect can be achieved by scaling the observed data by

1=�. As a result, a crystallography optimization problem can

be posed as the minimization of the disagreement between

observed and calculated data over all possible linear scale

factors and all possible parameters that position the model

protein:

min
u;�

L�w�u�; ��: �11�

The least-squares function is generally not used as an objective

function for the MR problem but has been used as an objec-

tive function for rigid-body re®nement. In fact, the optimal

value of � (in a least-squares sense), which we will use to prove

the equivalence between the two objective functions, is

commonly used in rigid-body re®nement programs such as

CNS and X-PLOR (Brunger, 1992). As will be shown, this

optimal value for � is
P

h Ic
hIo

h=�
P

h Ic
hIc

h� � IcTIo=IcTIc.

3. Proof of equivalence

In this section, we present a theorem establishing the

equivalence between minimizing L�w�u�; �� and maximizing

C�w�u�;wo�. Since maximizing the correlation coef®cient is

equivalent to minimizing 1ÿ C�w�u�;wo�, we will use these

optimization problems interchangeably. Thus, we will show

that �u�; ��� is a global minimizer of L�w�u�; �� if and only if u�

is also a global minimizer of 1ÿ C�w�u�;wo�. The two opti-

mization problems will be referred to as equivalent if the two

sets of global minimizers are identical. This equivalence will be

symbolically denoted as ,. The role the assumptions play

with respect to local versus global equivalence are discussed

following Theorem 1.

3.1. Theoretical results

Lemma 1. For u; v 2 Rm and u 6� 0,

min
�2R
k�uÿ vk2 � kvk2�1ÿ cos2hu; vi�: �12�

Proof. For ®xed u and v, the optimal scale factor is

�� � uTv=�uTu� or the solution to the normal equations for

the minimization problem above. [It is easy to see that the

solution to the more general problem, minx2Rn kAxÿ bk2 for

A 2 Rm�n with full rank and b 2 Rm, must satisfy the normal

equations ATAx � ATb because f �x� � kAxÿ bk2 is convex

and differentiable; see Demmel (1997), for example.] Now,

using the optimal scale factor ��,

uTv

uTu
uÿ v

� �T
uTv

uTu
uÿ v

� �
� uTv

uTu

� �2

uTuÿ 2
uTv

uTu
uTv� vTv

� vTvÿ �u
Tv�2

uTu

� vTv 1ÿ �u
Tv�2

vTvuTu

� �
:

Finally, using the de®nition coshu; vi � uTv=�kukkvk�,

vTv 1ÿ �u
Tv�2

vTvuTu

� �
� kvk2�1ÿ cos2hu; vi�: �13�

tu
Lemma 2. Let L�w�u�; �� be the least-squares function as

de®ned in (10), where wo 2 Rm and w : Rn !Rm and � 2 R.

Assume there exists u 2 Rn such that

w�u�Two > 0: �14�
Then,

min
u;�

L�w�u�; �� , min
u

L�w�u�; ��u��; �15�

where the scale factor for the second optimization problem is

��u� � w�u�Two

kw�u�k2
: �16�

Proof. Let

f �u; �� � k�w�u� ÿ wok2 and g�v� � k��v�w�v� ÿ wok2:

�17�
To prove the lemma, we show

�u�; ��� 2 U� � f� ~u; ~�� such that f � ~u; ~�� � f �u; �� 8 �u; �� 2 Rn �Rg
�18�

if and only if

u� 2 V� � f~v such that g�~v� � g�v� 8 v 2 Rng �19�
and

�� � ��u��: �20�
Let �u�; ��� 2 U�. Assumption (14) implies kw�u��k 6� 0.

Hence, as shown in Lemma 1, the unique solution to

min

kw�u�� ÿ wok2 �21�

is well de®ned as � � w�u��Two=kw�u��k2 � ��u��. There-

fore,

g�u�� � k��u��w�u�� ÿ wok2

� k��w�u�� ÿ wok2 � f �u�; ���
� k��v�w�v� ÿ wok2; �22�



that is, g�u�� � g�v� for arbitrary v. Thus, u� 2 V�. Moreover,

f �u�; ��� � k��w�u�� ÿ wok2

� k��u��w�u�� ÿ wok2 � g�u�� �23�
because �u�; ��� is a global minimizer of f �u; ��. Thus,

�� � ��u��, since k��w�u�� ÿ wok2 � k��u��w�u�� ÿ wok2 and

��u�� is the unique minimizer of (21). In addition,

g�u�� � f �u�; ���.
Now, let v� 2 V� and suppose f �v�; ��v��� > f �u�; ���. This

inequality implies g�v�� > g�u��, a contradiction. Therefore,

�v�; ��v��� 2 U�. tu
Theorem 1. Let C�w�u�;wo� be the correlation function as

de®ned in (2), where wo 2 Rm and w : Rn !Rm is a

continuous function on a compact set D � Rn. Let L�w�u�; ��
be the least-squares function as de®ned in (10) and ��u� be the

scale factor as de®ned in (16). Assume that w�u� 6� 0, wo 6� 0,

and there exists u 2 Rn such that

w�u�Two > 0; �24�
and assume that

1 � min
u

coshw�u�;woi; 2 � max
u

coshw�u�;woi; j1j < 2;

�25�
where the minimum and maximum are taken over the set D.

Then over the set D

min
u;�

L�w�u�; �� , min
u

L�w�u�; ��u�� , min
u

1ÿ C�w�u�;wo�:
�26�

Proof. Given that (24) holds, w�u�� 6� 0 and, by Lemma 2,

min
u;�

L�w�u�; �� , min
u

L�w�u�; ��u��: �27�

Now, since w�u� 6� 0, by Lemma 1,

L�w�u�; ��u�� � kwok2�1ÿ cos2hw�u�;woi�
� kwok2�1ÿ C2�w�u�;wo��: �28�

Thus, because wo 6� 0,

L�w�u�; ��u��
kwok2

� 1ÿ C2�w�u�;wo�: �29�

So

min
u

L�w�u�; ��u�� , min
u

1ÿ C2�w�u�;wo�: �30�

Now, clearly,

min
u

1ÿ C2�w�u�;wo� , max
u
�C2�w�u�;wo� � cos2hw�u�;woi�:

�31�
Similarly,

min
u

1ÿ C�w�u�;wo� , max
u

coshw�u�;woi: �32�

Now, given the assumption that 2 � maxu coshw�u�;woi, u� is

a global maximizer of coshw�u�;woi if and only if

coshw�u��;woi � 2. In addition, u� is a global maximizer of

cos2hw�u�;woi if and only if coshw�u��;woi � 2 since

j1j < 2 ) 2
2 > 2

1 . Thus,

min
u

1ÿ C2�w�u�;wo� , min
u

1ÿ C�w�u�;wo�: �33�

tu

As a result of Theorem 1, the least-squares function can also

be compared to the rotation function just as the correlation

coef®cient was. One could also argue that there is justi®cation

for subtracting the means, hjFojki and hjFc�u�jki, from the

respective data sets when computing the least-squares func-

tion because the very large spurious origin peak of the real-

space rotation function is damped by subtracting these

average values. In addition, it is interesting to note that, when

the least-squares function values are normalized by kwok2, the

least-squares function is equal to 1ÿ C2�w�u�;wo� so that the

landscape should be somewhat `sharper' than the correlation

coef®cient.

3.2. Regions of equivalence

The assumptions of the lemmas and theorem are satis®ed

for the observed and calculated intensities (or structure-factor

magnitudes) either in neighborhoods about a global minimizer

u� or for all u in the variable space. First, for a crystallography

optimization problem, assumption (24) should always be

satis®ed because w�u� � Ic�u� 6� 0 and wo � Io 6� 0. Similarly,

if w�u� � Ic�u� ÿ hIc�u�i and wo � Io ÿ hIoi, then w�u� 6� 0

because the calculated intensities become less bright at a

`fairly rapid rate' as their distance from the origin in reciprocal

space grows (Stout & Jensen, 1989, p. 165). For the same

reason, wo 6� 0.

Second, whether assumption (25) holds for any u in the

optimization variable space D depends on the de®nition of

w�u� and wo. {For example, in MR, u may be equal to

��1; �2; �3; x; y; z� and D � �0; 2��3 � �0; 1�3.} Assumption (25)

implies that

1 � coshw�u�;woi � 2; �34�
where j1j < 2. If w�u� � Ic�u� ÿ hIci and wo � Io ÿ hIoi,
then (25) may be satis®ed only in a neighborhood of a global

minimizer u�. That is, there will only be local equivalence

between the two functions in a neighborhood of the global

minimum.

If the average values are subtracted, then the cosine of the

angle between the two vectors w�u� and wo may be large and

violate assumption (25). However, if the model protein is

accurate enough, then, in a neighborhood of the global

minimizer u�, the initial angle between the observed and

calculated data should be small enough so that subtracting the

average values will not increase the angle so much as to violate

(25).

We now give a concrete example that shows that if the

means are subtracted then there may be regions for which

1ÿ C�w�u�;wo� and the least-squares function are not

equivalent. Suppose the means are subtracted and C�w�u�;wo�
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has a local minimum at u� such that C�w�u��;wo� < 0. Then,

1ÿ C�w�u�;wo� will have a local maximum at u�, but

kwok2�1ÿ C2�w�u�;wo�� � L�w�u�; ��u�� will have a local

minimum at u�. Thus, optimization of the two functions will

not be equivalent near u�.
In contrast, if the means are not subtracted, then

coshw�u�;woi will always be non-negative and assumption (25)

will hold for all u; that is, equivalence between the two func-

tions will hold for the entire optimization variable space D.

(Of course, the above arguments are the same if structure-

factor magnitudes are used in place of intensities.)

3.3. Some numerical results

To demonstrate graphically the equivalence between these

two objective functions, we compute two-dimensional slices of

1ÿ C�w�u�;wo� and the least-squares function for a MR

problem. The data were measured from a crystal of a peptidic

analog of the antibiotic molecule trichogin A IV. There was

only one molecule in the asymmetric unit of a relatively small

unit cell (a � 14:56, b � 11:759 and c � 9:473 AÊ ), and the

space group is P21. Thus, the MR problem is ®ve-dimensional.

The model molecule is the structure originally determined

from the experimental data, that is, the analog's 38 non-

hydrogen atoms (Crisma et al., 1994), so the model is exact. As

a result, one MR solution corresponds to no rotation and no

translation of the model. In addition, because the molecule

crystallized according to space group P21, there is one

symmetry-related solution at the Eulerian angles

��1; �2; �3� � ��; �; 0� and the translation t � �0; 0; 0�.

We compute two-dimensional slices (level sets) of the ®ve-

dimensional functions in the �1�2-plane, where �1 and �2 are

Eulerian angles. To produce the level sets, �3 is held ®xed at

zero and t � �0; 0; 0�. All intensities with resolutions between

1 and 7 AÊ , that is nine intensities, were used to compute the

target functions so the landscapes are relatively smooth. The

level sets are shown in Fig. 1. Clearly, the global minima of the

two functions occur in the same positions, and the two func-

tions are highly similar even though the least-squares function

was computed using intensities from which the mean value

was not subtracted, while the correlation coef®cient was

computed using intensities from which the mean value was

subtracted [or using equation (1)].

Recent developments in molecular replacement and other

crystallographic optimizations have included target functions

based on maximum-likelihood estimates in a Bayesian

approach; see Read (2001), Murshudov et al. (1997), for

example. These approaches involve statistical terms that

depend on the fraction of the unknown structure depicted by a

model and also the ability of the model to account for accurate

estimates of the observed diffraction data. These targets are

hard to relate mathematically to the targets analyzed in this

report. Furthermore, because of the dependence on large

numbers or terms for adequate sampling, the maximum-like-

lihood target is not calculable for the example given here.

Ongoing studies of the newer target functions seem appro-

priate and are under way.

3.3.1. Intensities versus structure-factor magnitudes. Now

that we have shown that the two functions are equivalent, one

must also choose to work with either intensities or structure-

Figure 1
The level sets of the low-resolution ®ve-dimensional correlation coef®cient and least-squares function that has been normalized by dividing by kIok2.
Clearly, the global minima occur in the same positions and the two functions are highly similar even though the least-squares function was computed
using intensities from which the mean value was not subtracted, while the correlation coef®cient was computed using intensities from which the mean
value was subtracted. All intensities between 500 and 7 AÊ , that is nine intensities, were used to compute the target functions so the landscapes are
relatively smooth.



factor magnitudes and whether or not to subtract the means.

On the practical issue of using intensities or structure-factor

magnitudes, during the development of the MR program

SOMoRe (search and optimization for molecular replace-

ment), we noticed that the correlation coef®cient computed

using structure factors tended to perform better (Jamrog et al.,

2003). This is not surprising since using structure factors is, in

essence, using the intensities weighted according to the errors

in their measurement. Because the experimental observation

of a diffraction intensity is a stochastic process with underlying

Poisson statistics, the estimated error in the measurement

is proportional to the square root of the intensity. As a result,

a proper weighting scheme for each intensity would have

a multiplier of 1=�Ih�1=2 transforming C�Ic�u�; Io� into

C�jFc�u�j; jFoj�. Otherwise more weight will be given to the

innermost intensities (which are likely to be the most inac-

curate), especially when computing a `low-resolution' target

function.

To estimate the amount of data suf®cient to compute a

reasonably accurate low-resolution correlation coef®cient (or

`surrogate' function) that can be used to identify regions of

the MR variable space where solutions are likely to exist,

SOMoRe was used to compute both C�Ic�u�; Io� and

C�jFc�u�j; jFoj� using equation (1) and, during some coarse

searches of these surrogate functions, viable starting points for

multi-start local optimization could only be found when

C�jFc�u�j; jFoj� was used. By viable starting points, we mean

points that were suf®ciently close to a global minimizer such

that the local optimization method BFGS (Broyden±Fletcher±

Goldfarb±Shanno) converged to a solution of the MR

problem. As a result, we feel C�jFc�u�j; jFoj� is likely to be

more accurate than C�Ic�u�; Io�, especially when low-resolu-

tion data are used. Similarly, Glykos & Kokkinidis (2001) and

Kissinger et al. (1999) have also advocated the use of struc-

ture-factor magnitudes over intensities.

3.3.2. Subtracting the means. We performed two experi-

ments using SOMoRe to determine if there is any appreciable

difference in accuracy between the correlation coef®cient

C�jFc�u�j; jFoj� de®ned by (1), computed using data from

which the means have been subtracted, and the following

correlation coef®cient:

C0�jFc�u�j; jFoj� �
P

h jFc
h�u�jjFo

h j
�Ph jFc

h�u�j2�1=2�Ph jFo
h j2�1=2

: �35�

For the ®rst experiment, both functions were used to optimize

the same set of starting points [found from a coarse 8 AÊ global

search using C�Ic�u�; Io�]. Then, to determine the accuracy of

the global minimizers found, the root-mean-square deviations

(RMSDs) between the atomic coordinates of the target

protein and the model positioned according to the two sets of

global minimizers were computed. The difference between the

two sets of RMSDs were in the third decimal place of an AÊ .

Thus, using C�jFc�u�j; jFoj� or C0�jFc�u�j; jFoj� did not have an

appreciable effect on the accuracy of the local optimization

performed (Jamrog, 2002). However, the function values at

the global minimums were 0.08 for C0�jFc�u�j; jFoj� and 0.24

for C�jFc�u�j; jFoj�. Thus, the cosine of the angle between the

vectors grew because the mean value was subtracted from

both data sets (growing from about 23 to 40.5�). A similar

comparison was also performed for a more dif®cult MR test

problem, more dif®cult because the model protein was not as

accurate. Both functions were used to perform a coarse global

search of the surrogate function and local optimization and,

again, from a practical point of view, we did not see an

appreciable difference. Both functions were accurate enough

to provide solutions to the MR problem.
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